On Ricci identities for submanifolds in the 2-osculator bundle
نویسنده
چکیده
It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([1],[2]) and the notion of submanifolds in the 2-osculator bundle. A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in third and fourth sections.The Ricci identities for the deflection tensor are present in the next section. Mathematics Subject Classification: 53B05, 53B15, 53B25, 53B40
منابع مشابه
On Ricci identities for submanifolds in the 2-osculator bundle
It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([9], [2], [4]) and the notion of submani-folds in the 2-osculator bundle ([9]). A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in the fourth and fifth section ([15], [16...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009